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ABSTRACT
To perform complex geometry large eddy simulations in an

industrially relevant timeframe, one must reduce the total time to
half a day (overnight simulation). Total time includes the time
of developing the mesh from the computer-aided design (CAD)
model and simulation time. For reducing CAD-to-mesh time,
automatic meshing algorithms can generate valid but often non-
efficient meshes with often up to an order of magnitude more
grid points than a custom-based mesh. These algorithms are ac-
ceptable only if paired with high-performance computing (HPC)
platforms comprising thousands to millions of cores to signifi-
cantly reduce computational time. Efficient use of these tools
calls for codes that can scale to high processor counts and that
can efficiently transport resolved scales over the long distances
and times made feasible by HPC. The rapid convergence of high-
order discretizations makes them particularly attractive in this
context. In this paper we test the combination of automatic hex-
ahedral meshing with a spectral element code for incompressible
and low-Mach-number flows, called Nek5000, that has scaled
to P>262,000 cores and sustains >70% parallel efficiency with
only ≈7000 points/core. For our tests, a simple pipe geometry is
used as a basis for comparing with previous fully resolved direct
numerical simulations.

INTRODUCTION
In an engineering design cycle, design analysis must be

quick in order to evaluate and modify a design to the desired
performance. In some cases, reduced analyses or empirical cor-
relations provide a good enough initial evaluation to proceed to

prototype; otherwise, one must perform computational analyses
to test design validity. The field of computer-aided design (CAD)
and computational analysis has had significant growth over the
last decade. SolidWorks, a leading CAD software product, re-
ports 1.5 million users globally [1]. Stress analyses, vibration
analyses, and dynamics analyses are all possible with most com-
mercially available CAD software. Fluid mechanics analyses (or
computational fluid dynamics, CFD), however, has only recently
begun to be incorporated into CAD software. This situation is
due mainly to the numerical difficulties and stability concerns
that have kept CFD from automatic, or “pushbutton,” solutions.

For most other stress-based solid mechanics analyses, the
finite-element numerical representation of conservation of mass,
momentum, and energy results in an unconstrained minimiza-
tion problem (also known as the Rayleigh-Ritz criterion) [2, 3].
In fluid mechanics, because of pressure that couples the conser-
vation of momentum with conservation of mass, the numerical
solution is a constrained minimization problem. For example,
in incompressible fluid flow, only velocity solutions that are di-
vergence free are valid. These stability difficulties also persist
in low-Mach (slightly compressible) flows, where thermal pres-
sure is linked to a state equation (ideal gas) [4], and in transonic
and supersonic flows, where only nonoscillatory solutions near
shocks are allowed [5,6]. Solving the time-dependent fluid equa-
tions as opposed to the time-averaged equations (as done in most
solvers) is significantly more stable because the solution is in-
tegrated forward in time from a valid solution. However, this
approach is often prohibitive and requires typically an order of
magnitude or more increase in computing, as well as robust mod-
els for any unresolved scales (subgrid stress models or turbulence
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models) [7–9]. Therefore, the first challenge in reducing the time
for a CFD solution is reducing the simulation time [10].

The second challenge in shortening the total time of CFD
is meshing. In all CFD, mesh quality plays a significant role in
improving both solution convergence as well as accuracy [11].
Furthermore, having resolution only in regions where resolution
is needed, either through adaptive meshing or custom hand-built
meshing, also provides a significant reduction in simulation time.
However, meshing often takes the longest time, often an order
of magnitude longer to perform than the actual simulation [12].
Thus, an automated meshing tool is needed that generates a high-
quality mesh rapidly.

Automatic Hexahedral Meshing
Because of the significant role that the mesh of a given do-

main plays in a simulation’s quality, the creation and improve-
ment of meshing algorithms continue to be a major focus of re-
search. Three common criteria used to compare algorithms are
the time needed to create the mesh, the mesh quality on the inte-
rior of the domain, and the mesh quality near the boundaries [12].
For fluid simulations, the mesh quality near the boundary can
play a significant role, particularly for simulations with high tur-
bulence. Fully hexahedral meshes exhibit many desirable traits
over meshes with mixed elements or fully tetrahedral elements,
such as improved efficiency and a better representation of the
boundaries [13, 14]. However, there exist no universal, robust
meshing algorithms for fully hexahedral meshes, although a few
methods have shown promise.

One such method is the grid-based algorithm [15]. This
method begins with a structured grid (quads for a 2D domain,
hexes for a 3D domain) inside the domain to be meshed. New
elements are created to fill any gaps between the original mesh
and the boundaries. This algorithm produces elements with ex-
cellent quality for the domain interior, but the mesh quality suf-
fers near the boundary. Other methods attempt to automate
the process one would go through when creating a mesh man-
ually; the domain is decomposed into pieces that can be easily
meshed [16–19]. Still, other methods attempt to create a mesh
beginning at the boundary and moving inward, such as plas-
tering [20] and whisker weaving [21]. These methods produce
meshes with good quality at the boundaries, but the mesh quality
can suffer at the interior (if the mesh can be created at all).

Massively Parallel Spectral Element Algorithms
We have recently undertaken a series of spectral-element

based simulations in complex domains for turbomachinery ap-
plications, including a high-pressure turbine (HPT) heat transfer
calculation and a low-pressure turbine (LPT) aerodynamic cal-
culation. Despite decades of advancement, these complex flows
remain not fully understood because of their complex turbulence
dynamics and thus nonoptimal designs. To change this situa-

Figure 1: Automatically generated hexahedral mesh from a pipe
CAD geometry, resulting in E=4556 elements. With polynomial
order N=9, total grid points is 3.3 million.

tion requires the use of the inherently more accurate large eddy
simulation (LES) in the design cycle. This is a challenging task
because HPT and LPT cases involve complex geometries and
high element count to resolve the flow features and, including a
complex turbulence generation section, curved blade geometries,
boundary layers, and in the HPT case cooling holes. We hypoth-
esize that using a massively parallel LES algorithm (greater that
1,000 CPUs) with an automatically generated mesh has the po-
tential to perform these simulations in an industrially relevant
timeframe.

In this paper we test this hypothesis in a simple yet well-
studied turbulent pipe flow geometry. An automatic hexahedral
meshing routine algorithm from Exosent, LLC, is used to mesh a
simple pipe CAD geometry, and Nek5000, a massive paralleliza-
tion of a spectral-element algorithm, is used for solving the time-
dependent (and thus more stable) fluid equations. A large eddy
simulation using the automatic mesh shown in Fig. 1 is run and
the results are compared with those of a direct numerical simu-
lation (DNS) on a structured, hand-built mesh shown in Fig. 2
from the same solver.

NUMERICAL SETUP
The flow simulations are based on Nek5000, a spectral-

element solver developed over the past 20 years for turbulence
research [22–29]. Nek5000 solves the Navier-Stokes equations,
which represent conservation of mass, momentum, and energy

∂Uj

∂x j
= 0, (1)
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Figure 2: Cross section of mesh for direct numerical simulation
turbulent pipe from Duggleby et al. [29] with E = 2560 elements
(64 in cross section), and 4.4 million grid points using polyno-
mial order N=12.

with velocityUi, pressure P, kinematic viscosity ν, and for LES
the subgrid stress tensor τSGSi j . Nek5000 employs a geometri-
cally flexible yet exponentially convergent spectral-element dis-
cretization in space, dividing the computation into E elements
over which the solution is represented as a high-order (usually
N=7-15) Lagrangian interpolant, for a total of n ≈ EN3 grid-
points. Time discretization is based on high-order operator split-
ting methods that yield independent substeps for advection, dis-
sipation, and incompressibity. Advection is treated explicitly
in time while the viscous and pressure substeps are solved im-
plicitly with, respectively, Jacobi-preconditioned conjugate gra-
dients and multigrid-preconditionedGMRES [22, 24].

The data localization of the spectral-element method allows
for minimal communication between elements, resulting in effi-
cient parallelization. Moreover, the use of tensor-product-based
operator evaluation results in memory demands that are equiv-
alent to 7-point finite difference stencils. The computational
complexity scales as O(nN) but the leading order work term is
cast in the form of highly efficient matrix-matrix products that
place minimal demand on memory bandwidth [30]. Currently
the solver has shown sustained performance of 19% of peak
on 260,000 processors on Julich BG/P supercomputer with over
70% parallel efficiency [31].

Direct Numerical Simulation with Custom Mesh
Using DNS to solve the conservation of mass and momen-

tum equations for all possible temporal and spatial scales comes
at a cost. The computational operations scale as Re4τ , and storage
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Figure 3: Transfer function for the high-pass filter LES model
are set similar to a cosine function that filters the large scales
and leaves the small scales unfiltered. A stabilizing filter is used
for all simulations (DNS and LES) where the last 2 modes are
filtered.

requirements scale as Re9/4τ [32].
The DNS turbulent pipe flow data are generated by using

Nek5000 and a custom built hexahedral mesh, shown in Fig. 2.
The mesh has E = 2560 elements, and the data were generated
with polynomial order N = 12 for a total of 4.4 million grid
points. The flow is driven by a mean streamwise pressure gra-
dient to obtain a Reynolds number of Reτ = 150. When nondi-
mensionalized with the mean velocityUm, the Reynolds number
is Rem =UmD/ν≈ 4300. The domain length is L= 20R= 10D
(diameters) or z+ = 3000 in wall units (distance nondimension-
alized by the length ν/Uτ), which is long enough to use periodic
boundary conditions to achieve realistic turbulent inlet and out-
let conditions. The mesh is structured, shown in Fig. 2, using
a gridding preprocessor associated with Nek5000. Data are ac-
quired for 2,100 samples every t+ = 8. This corresponds to a
total simulation time of t+ =U2τ t/ν= 16800 viscous time units,
which is roughly tUm/D ≈ 800. Further details can be found in
Duggleby et al. [29].

Large Eddy Simulation with Automatic Mesh
When DNS is too computationally expensive or would take

too long to reach a solution, large eddy simulation is an option.
For LES, not all spatial scales are resolved, and the effect of
the unresolved scales are modeled through a sub-grid stress term
τSGSi j in Eq. 2. The model used here is a high-pass-filtered (HPF)
Smagorinskymodel from Stolz et al. [33]. In this model, the SGS
stress term is based off a HPF velocity-strain rate rather than the
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Figure 4: Contour plot of velocity magnitude in a 2D slice for the automatic mesh pipe simulation with the subgrid stress (SGS) model.

full velocity-strain rate:

τSGSi j −
δi j
3
τSGSkk = −2νHPFt Si j, (3)

Si j =
1
2

(∂Uix j + ∂Ujxi) , (4)

νHPFt =
(

CHPFs Δ
)2

| Si j(Ũ) |, (5)

where Δ is the filter width taken as the largest distance between
the Gauss-Lobatto-Legendre (GLL) points in physical space,
CHPFs is a constant with a value 0.1, and ũ is the high pass fil-
tered velocity field. A dynamic version of the model with varying
CHPFs is possible; however, the fixed coefficient has shown satis-
factory results [33, 34] and is thus chosen for the present inves-
tigation. This model performs well in transitional flows as well
as nonisotropic flows [34, 35]. The model is a good candidate
for a generalized LES model that requires no parameter tweak-
ing or adjustment for any given problem. The filter is shown in
Fig. 3. Nek5000 also has a stabilizing filter developed by Fis-
cher et al. [36] for the spectral element basis function that filters
out the high-frequency components, shown in Fig. 3. The filter
is applied after each time step and preserves interelement con-
tinuity [37]. This avoids the nonphysical spectral build up in
the energy spectra that is usually found in underresolved DNS
or LES. The HPF Smagorinsky model is applied after each time
step and acts upon the velocity components filtered by the stabi-
lizing filter.

For the LES, the mesh is generated with a CAD hexahe-
dral meshing algorithm from Exosent, LLC, shown in Fig. 1,
with E = 4556 elements. Adding a boundary layer resolution
to an automatically generated mesh is a planned extension of this
work. The mesh is imported into Nek5000 and run at the same
Reynolds number Reτ = 150. Polynomial order N=9 was used,
totaling 3.3 million grid points. The domain is 21 R long, one
diameter longer than the DNS. Periodic boundary conditions at
z = 0 are enforced via a recycling plane at z = 20R downstream
from the inlet, with an outlet (stress-free) boundary condition is
prescribed at z= 21R. Initial conditions are the same as the DNS
flow. The velocity field at the inlet is scaled such that the flow
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Figure 5: Convergence plot without SGS model shows the be-
ginning of convergence. With the custom mesh from Duggleby
et al. [29], the solution was already converging exponentially at
10−3 error with the same amount of grid points.

rate is constant, set to match the same value as the DNS, using a
proportional controller.

RESULTS
An instantaneous slice of the automated mesh flow field is

shown in Fig. 4. Five domain flow throughs were simulated
from the initial conditions (including transition). Statistics were
averaged over approximately one flow-through. A grid conver-
gence plot shown in Fig. 5 for the simulation without the LES
SGS model reveals convergence although high error due to the
coarseness of the mesh as polynomial order is increased. With
the custom mesh where resolution is added where most needed
near the wall, the error is already to 10−3 [29]. With the LES
SGS model, increasing the polynomial order changes the filter
width because it is coupled to the grid spacing when the number
of filtered modes is kept constant. This is similar to eddy dif-
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Figure 6: Mean axial velocity U+
z versus y+ for the LES with

SGS model (solid), without SGS model (dot-dashed) and DNS
fromDuggleby et al. [29] (dashed). Because the automated mesh
is only piecewise smooth on the wall, the mean is not fully de-
fined to r = R. With LES model the error is approximately 5%.
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Figure 7: Velocity fluctuation rms versus y+ for the LES with
SGS model (solid), without SGS model (dot-dashed) and DNS
from Duggleby et al. [29] (dashed). The u+

r,rms peak location for
the LES with SGS model is in close agreement with the DNS
peak. Both LES overshoot azimuthal and streamwise rms due to
the roughened wall but are within 15%.

fusivity LES on finite-volume meshes. Estimating convergence
via grid independent solution is thus prohibited, as pointed out
by Celik et al. (2009) [38]. Since no convergence study can be
presented, validation against experimental values becomes even
more important to ensure simulation confidence.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  20  40  60  80  100  120  140

LES, no model
LES, with SGS model
DNS, Duggleby et. al.

u+
r u+

z

y+

Figure 8: Reynolds shear stress u+
r u+

z versus y+ for the LESwith
SGS model (solid), without SGS model (dot-dashed) and DNS
from Duggleby et al. [29] (dashed). The LES with SGS model is
closer to the DNS, but both overshoot due to the roughened wall.
Away from the wall (y+ > 50) the slope of the LES with SGS
model matches the DNS.
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Figure 9: Automatic mesh simulation showing strong scaling up
to 256 processors, resulting in a simulation time of 12.5 hours.

The automatic computational mesh is only piecewise cylin-
drical, and so the walls are not smooth. This extra roughness
creates higher wall shear stress, resulting in an Reτ of approxi-
mately 200 and 185 for the LESwith and without the SGSmodel.
Smoothing the walls is a planned extension of this work. The
mean axial velocity is shown in Fig. 6. Note that because of the
piecewise continuous approximation, data is not fully defined all
the way to y+ = (R− r)uτ/ν= 0 as R is constant as defined from
the CAD geometry. Similarly, the standard turbulence near-wall
result of U+

z ≈ y+ also does not hold. With the SGS model, the
mean velocity is within 5% error.

Plots of root-mean-square (rms) of fluctuating velocity com-
ponents u+

r,rms,u+
θ,rms,u

+
z,rms are shown in Fig. 7, where ui is the
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Figure 10: Extending to more complicated geometries, a Venturi converging-diverging nozzle is added to the end of the pipe geometry
at z= 21R. The geometry is sketched in CAD, mesh generated, and LES results completed overnight. Shown are instantaneous contours
of velocity magnitude in a 2D cross-section.

Figure 11: Extending to even more complicated geometries, a centrifugal compressor (left) with initial pressure isosurfaces on the walls
is shown, and the mesh (showing GLL points) of the corresponding valute (right).

fluctuating component of the velocity field Ui =Ui + ui and Ui
denotes an average over time as well as azimuthal and stream-
wise planes. The u+

r,rms peak with the LES model is closer to
the DNS peak. LES both with and without the SGS model over-
shoots the DNS u+

θ,rms,u
+
z,rms components by 15%, most likely

because of the roughened wall. For the same reason both also
overshoot the Reynolds stress u+

r u+
z shown in Fig. 8, but the

LES model with SGS is closer to the DNS model.

CPU scaling for this study is shown in Fig. 9. A couple of
flow-throughs take only 3 hours and so fit within the criteria of
an overnight simulation. Along with a mesh generation that took
under five minutes, this is a valid example.

Extension to generalized geometries

As an extension to more complicated geometries, a Venturi
converging-divergingnozzle was added to the CAD geometry af-
ter z= 21R. The exact curvature was “hand drawn” in CAD and
not an empirical formula. The new mesh again was generated in
under 5 minutes, and the simulation ran overnight. A flow visu-
alization 2D cross-section of axial velocity is shown in Fig. 10.
An even more complex extension to a centrifugal compressor is
shown in Fig. 11 with initial pressure isosurface results. Again,
the time from CAD to mesh was under 5 minutes.
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CONCLUDING REMARKS
An automatic CAD to mesh algorithm paired with a mas-

sively parallel Navier-Stokes algorithm is tested for industrial
relevance. This relevance is measured by a 12-hour maximum
time requirement from CAD to numerical solution, representing
an overnight simulation. Although not restricted to simple ge-
ometries, this approach is tested here in a simple pipe geometry
with high-quality DNS data generated from the same algorithm
to compare against. The LES model used in the study is based on
a high-pass-filtered strain rate that has shown good performance
in complex geometries. The LES results match qualitatively very
well with previous DNS results, with only small errors in turbu-
lent peak locations and 5-15% error in turbulent statistics. Total
simulation time was ∼ 12.5 hours from CAD to LES results.
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NOMENCLATURE
Uppercase
Cs Smagorinsky constant
D Pipe diameter
E Elements
N Polynomial order
P Pressure
R Pipe radius
Si j Strain rate tensor
Um Mean streamwise velocity
Re Reynolds number
Lowercase
ũ HPF velocity field
r Radial coordinate
uτ Shear velocity,

√

τw/ρ
ui Velocity vector
xi Position vector
z Streamwize (axial) coordinate
Greek
Δ LES filter width
δ Kronecker delta
θ Azimuthal coordinate
ν Kinematic viscosity
ρ Density
τi j Stress tensor
τw Wall shear stress
Superscripts
+ Wall unit normalization
Acronyms
CAD Computer aided design

CFD Computational fluid dynamics
DNS Direct numerical simulation
GLL Gauss-Lobatto-Legendre
HPF High-pass filtered
LES Large eddy simulation
RMS Root-mean-square
SGS Subgrid stress
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Karhunen-Loève dimension of an extensively chaotic flow
field given a finite amount of data”. Computers & Fluids,
39, pp. 1704–1710.

[28] Duggleby, A., Ball, K. S., and Schwaenen, M., 2009.
“Structure and dynamics of low reynolds number turbulent
pipe flow”. Phil. Trans. Roy. Soc. A, 347, pp. 473–488.

[29] Duggleby, A., Ball, K. S., Paul, M. R., and Fischer, P. F.,
2007. “Dynamical eigenfunction decomposition of turbu-
lent pipe flow”. J. of Turbulence, 8(43), pp. 1–24.

[30] Deville, M. O., Fischer, P. F., and Mund, E. H., 2002.
“High-order methods for incompressible fluid flow”. In
Cambridge Monographs on Applied and Computational
Mathematics, P. G. Ciarlet, A. Iserles, R. V. Kohn, and
M. H. Wright, eds., Vol. 9. Cambridge University Press.

[31] S. Kerkemeier, S. Parker, P. F. F., 2010. Scalability of the
NEK5000 spectral element code. Jülich Blue Gene/P Ex-
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